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Abstract

In this work the effects of the electromechanical interaction on rotordynamics and vibration characteristics of cage rotor

electrical machines were considered. An eccentric rotor motion distorts the electromagnetic field in the air-gap between the

stator and rotor inducing a total force, the unbalanced magnetic pull, exerted on the rotor. In this paper a low-order

parametric model for the unbalanced magnetic pull is coupled with a three-dimensional finite element structural model of

the electrical machine. The main contribution of the work is to present a computationally efficient electromechanical model

for vibration analysis of cage rotor machines. In this model, the interaction between the mechanical and electromagnetic

systems is distributed over the air gap of the machine. This enables the inclusion of rotor and stator deflections into the

analysis and, thus, yields more realistic prediction for the effects of electromechanical interaction. The model was tested by

implementing it for two electrical machines with nominal speeds close to one of the rotor bending critical speeds. Rated

machine data was used in order to predict the effects of the electromechanical interaction on vibration characteristics of the

example machines.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In an electrical machine the eccentric motion of the rotor distorts the air-gap flux between the stator and
rotor inducing unbalanced magnetic pull (UMP) exerted on the rotor. In a machine with nominal speed close
to a rotor bending critical speed the UMP may couple the mechanical and electromagnetic system changing
the vibrational characteristics of the rotor. The UMP decreases the natural frequencies and may affect the
stability of the system by electromagnetic damping induced by the rotor cage currents.

Freise et al. [1] presented the analytical equations for the UMP induced by the eccentric rotor motion.
Further, they presented a simple formula to determine the first flexural critical speed starting from the negative
spring coefficient induced by the electromagnetic fields. Früchtenicht et al. [2] derived the equations for the
UMP when the rotor is in circular whirling motion with arbitrary whirling frequency. Using this model they
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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determined the additional stiffness and damping coefficients induced by the electromagnetic field, and
developed an electromechanical (EM) model to study the effects on the rotordynamic stability. Belmans et al.
[3] extended the approach to the two-pole flexible-shaft machines including the effect of the unipolar flux.

Arkkio et al. [4] presented a low-order parametric model for the forces between the stator and rotor.
Holopainen et al. [5] extended the model by introducing cage current variables modeling the rotor cage
currents. Furthermore, Holopainen et al. [6] combined the force model to Jeffcott rotor model and studied
stability of the system.

The effect of UMP on vibrational characteristics of electrical machines has been under active research
[7–10]. Ha et al. [11,12] considered transient analysis of a mass unbalanced rotor under UMP. They carried
out time stepping procedure by solving the magnetic field equations in the air-gap to obtain UMP exerted on
rotor shaft which was modeled by a structural finite element (FE) model. Tenhunen et al. [8] studied the UMP
exerted on the cage rotor in conical whirling motion. They applied a numerical calculation model, where the
core section was divided into a set of slices perpendicular to the machine axis. The rotor shaft and stator core
were assumed to be rigid. The electromagnetic field of individual slices was solved by the FE method and the
slices were coupled together by the rotor cage and stator winding currents. They validated the model by test
measurements for a 15 kW cage induction motor.

In this paper, we consider the rotor vibrations of cage rotor machines having nominal running speed close
to rotor bending critical speed. We present a computationally effective distributed EM interaction model for
examining the effect of UMP on rotor system vibrations. A low-order parametric model for UMP [5] was
extended and combined to three-dimensional (3D) FE structural analysis model of the mechanical system
including the rotor, stator, sleeve bearings, foundation, and machine housing. Owing to the rotor bending
modes lying at the low-frequency range the system order reduction was efficiently carried out by modal
superposition method. Unbalanced mass response and orbital analysis of the rotor center locus under
electromagnetic interaction were considered.
2. Methods

The basis of our research lies on the parametric electromagnetic force model introduced by Holopainen et
al. [5]. In this analysis we utilize the sliced structure of the rotor and stator each slice being perpendicular to the
rotor shaft. We apply the parametric model on each slice. The separate slices are coupled by the cage current
formulation manifesting the continuity condition of the cage currents.
2.1. Electromagnetic force model

Holopainen et al. [5] presented a simple parametric model for the electromagnetic force. This parametric
model describes the total force between the rotor and stator in transversal plane. The following main
assumptions are used in the derivation of the model: (a) the rotor core is a rigid cylinder, (b) the axes of rotor
core and stator bore remain parallel during the eccentric rotor motions, (c) there are no parallel paths [13–15]
in the stator winding, and (d) the unipolar flux, which may be associated with the eccentricity, particularly in
two-pole machines [3], is neglected. In the complex formulation [5] on the transversal plane the
electromagnetic total force F em;r exerted on the rotor is given by

F em;r ¼ k0pc þ c�g� þ cþgþ, (1)

_g� þ ðt
�1
� þ jo�Þg� þ b� _pc þ jb�o� pc ¼ 0, (2)

where dot refers to the time derivative and j2 ¼ �1. In Eqs. (1) and (2) the complex variable pc denotes the
transversal displacement of the rotor axis with respect to the center line of the stator bore and g� are referred
to as the cage current variables. The subscripts � refer to the rotor cage currents of harmonic order p� 1, the
dominant ones in producing UMP, in which p is the number of pole pairs of the machine. In the case p ¼ 1
(two-pole machine) only the harmonic component pþ 1 is present in the formulation with a single cage
current variable gþ. The force exerted on the stator is given by F em;s ¼ �F em;r.
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Table 1

Electromagnetic force model parameters

p Number of pole pairs

t� Time constants of cage currents p� 1

b� Eccentricity coefficients of cage currents p� 1

o� Relative operational angular frequencies

om,f m Rotation frequency

os,f s Supply frequency

s Slip

k0 Geometric coefficient of eccentricity force

c� Cage current coefficients of eccentricity force

R� Rotor cage resistances of cage currents p� 1

L� Rotor cage inductances of cage currents p� 1
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In Eq. (2) the rotor cage current time constants t� ¼ L�=R� depend on resistances R� and inductances L�
of the rotor cage current harmonic components. Furthermore, we have introduced the relative operational
angular frequency o� ¼ �½os � omðp� 1Þ� where we have the supply angular frequency os ¼ 2pf s and the
rotor shaft angular frequency om ¼ 2pf m in which f s is the supply frequency and f m the rotational frequency
of the rotor. In steady-state operation [5] we have ð1� sÞos ¼ pom in which s denotes the slip between os and
om. Furthermore, under constant flux operation, we have sf s ¼ sratf s;rat where srat and f s;rat are the slip and the
supply angular frequency at the rated operational conditions, respectively. Consequently, we obtain f s ¼

pf m þ sratf s;rat and hence o� ¼ �ðsratos;rat � omÞ.
The relevant electromagnetic parameters are listed in Table 1. The parameters were evaluated at machine

rated operation with supply frequency f s;rat and slip srat between the fundamental magnetic flux and rotor
rotational speed. In Eqs. (1) and (2) the electromagnetic parameters k0, c�, t� and b� depend on machine
operation conditions, that is, mainly on the rotational speed, supply frequency and load. However, when
rotational speed is lower than the rated operation speed the electromagnetic variables can be taken as
constants [6]. Above the rated speed, with increasing rotational speed the electromagnetic variables may
change considerably. This means that, as we are interested in the rotor bending modes, the analysis is proper
for supercritical machines with rated speed higher than the first rotor bending frequency. For subcritical
machines the electromagnetic variables have to be evaluated for various rotational speeds since the
electromagnetic parameters depend heavily on the operational conditions.

In Eq. (1) the radial part of the force (k0pc) represents a well-known negative spring effect in electrical
machines. It has been a common practise in industry to include the negative spring effect in FE structural
modeling of electrical machines for years. The tangential component of the force is related to the cage current
variables g�. Tangential force component may bring EM damping to the system or act as a source for
instability.

From Eq. (2) we see that the cage current p� 1 components are fed by the rotor motion with respect to the
stator. The attenuation of the cage currents is characterized by the time constant t�.

The parameters k0, c� and b� of Eqs. (1) and (2) are numerically estimated by means of the method
introduced in Ref. [16]. Indeed, at rated operational conditions, a two-dimensional (2D) coupled field-circuit
problem was solved by time-stepping method [17]. As a result, the time-series data for the rotor cage currents
and the force exerted on the rotor shaft were obtained. From this data, the current–force frequency responses
were calculated by applying Fourier analysis. The parametric model was then fitted to the frequency response
data by utilizing least-squares algorithm.

The 3D application of the EM force model presented by Eqs. (1) and (2) is accomplished by slicing the
stator core and rotor shaft element models with each slice being perpendicular to the rotor shaft. The rotor
shaft is modeled by beam elements and the stator bore is a cylinder around the rotor modeled by solid
elements (see Fig. 1(a)). The cage current variables couple the slices manifesting implicit continuity conditions
for cage currents.

In the following the FE meshes of the stator core and rotor shaft are supposed to have a sliced structure
consisting of N slices perpendicular to the rotor shaft. On each slice ‘ ¼ 1; . . . ;N there is a single rotor node
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Fig. 1. Slicing the stator and rotor: (a) FE mesh of the stator and rotor and (b) the stator deformation is taken into account by averaging

the stator inner core displacements.
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with N‘ stator bore inner core nodes fn
‘
sg, s ¼ 1; . . . ;N‘ (see Fig. 1(b)). Let us align the z-axis along with the

rotor shaft. In order to apply the 2D EM force model given by Eq. (1) we reduce the stator bore inner core
node displacements to a single node by averaging procedure. Indeed, the averaged stator bore inner core
transverse displacements in x- and y-directions for slice ‘ are given by

û‘x;s ¼
1

N‘

XN‘

s¼1

uxðn
‘
sÞ,

û‘y;s ¼
1

N‘

XN‘

s¼1

uyðn
‘
sÞ, (3)

where uxðn
‘
sÞ and uyðn

‘
sÞ are the x- and y-displacement degrees of freedom (dofs) of the node n‘s, respectively.

By applying Eq. (1) we deduce, by slicing in z-direction and including the averaged stator dofs given by
Eq. (3), the transversal electromagnetic force exerted on the rotor node of slice ‘ given by

F ‘
em;r ¼

1

N
½k0ðp

‘
r � p‘sÞ þ c�g� þ cþgþ�, (4)

where the complex-valued stator and rotor transversal displacements of slice ‘ are given by p‘s ¼ û‘x;s þ jû‘y;s
and p‘r ¼ u‘x;r þ ju‘y;r, respectively. By averaging the rotor and stator relative transversal displacements p‘r � p‘s
in z-direction over the stator bore we obtain by utilizing Eq. (2) the dynamical equations for cage current
variables given by

_g� þ a�g� þ
b�

N

XN

‘¼1

ð _p‘r � _p‘sÞ þ
k�

N

XN

‘¼1

ðp‘r � p‘sÞ ¼ 0, (5)

where we have

a� ¼ t�1� þ jo�,

k� ¼ jb�o�. (6)

If the axis of a rigid rotor remains parallel to the axis of a rigid stator during the eccentric rotor motion, the
electromagnetic force model presented by Eqs. (4) and (5) reduces into the form of Eqs. (1) and (2). The form
of this reduced parametric model has been numerically verified against more complete FE models [5]. In
addition, the experimental validation for this reduced model was carried out by Arkkio et al. [4]. Another
special case is the symmetric conical whirling motion studied by Tenhunen et al. [18]. In this motion the center
point of the rigid rotor remains fixed but the ends are in whirling motion. In this case, the sums in Eq. (5)
become zero and, consequently, the cage current variables g� disappear. This result is compatible with the
numerical and experimental results presented by Tenhunen et al. [18]. These observations suggest that the
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model presented by Eqs. (4) and (5) can explain the main phenomena related to the cylindrical and conical
motion of a rigid rotor presented earlier and it was validated by experimental measurements. However, the
deflections of the rotor and stator have been mainly disregarded in previous research.

The EM force and dynamic equations of the slice model given by Eqs. (4) and (5) are written in real matrix
form in order to couple them with those of the FE model of the machine. Let us consider the slice ‘ with

transversal displacement dofs given by u‘ ¼ ðû‘x;s; û
‘
y;s; u

‘
x;r; u

‘
y;rÞ

T. The electromagnetic force given by Eq. (4)

exerted on the stator and rotor nodes of the slice ‘ is written in real vector form as

F‘em ¼ K‘
0u
‘ þQ‘g (7)

in which g ¼ ðg�;R; g�;I ; gþ;R; gþ;I Þ
T with R and I denoting the real and imaginary parts, respectively. In Eq. (7)

the matrices K‘
0 and Q‘ are given by

K‘
0 ¼

1

N

k0 0 �k0 0

0 k0 0 �k0

�k0 0 k0 0

0 �k0 0 k0

2
6664

3
7775; Q‘ ¼

1

N

�c�;R c�;I �cþ;R cþ;I

�c�;I �c�;R �cþ;I �cþ;R

c�;R �c�;I cþ;R �cþ;I

c�;I c�;R cþ;I cþ;R

2
66664

3
77775.

The electromagnetic force exerted on the system composed of the stator and rotor is given by

Fem ¼ K0u
sr þQg, (8)

where usr ¼ ðu1; . . . ; uNÞ
T and the matrices K0 and Q are obtained by applying matrix building by

K0 ¼

K1
0 0 0

0 . .
.

0

0 0 KN
0

2
6664

3
7775; Q ¼

Q1

..

.

QN

2
664

3
775.

From Eq. (8) we see that K0 reduces the stiffness of the stator–rotor system while Q effect on the damping
properties.

Dynamics of the cage current variables given by Eq. (5) is formulated in the matrix form as

_gþ Kcu
sr þ B_usr þ Ag ¼ 0. (9)

In Eq. (9) we have

A ¼

a�;R �a�;I 0 0

a�;I a�;R 0 0

0 0 aþ;R �aþ;I

0 0 aþ;I aþ;R

2
66664

3
77775,

Kc ¼ ½K
1
c ; . . . ;K

N
c � and B ¼ ½B1; . . . ;BN � in which we have

K‘
c ¼

1

N

�k�;R k�;I k�;R �k�;I

�k�;I �k�;R k�;I k�;R

�kþ;R kþ;I kþ;R �kþ;I

�kþ;I �kþ;R kþ;I kþ;R

2
66664

3
77775 and B‘ ¼

1

N

�b�;R b�;I b�;R �b�;I

�b�;I �b�;R b�;I b�;R

�bþ;R bþ;I bþ;R �bþ;I

�bþ;I �bþ;R bþ;I bþ;R

2
66664

3
77775. (10)

2.2. Electromechanical interaction model

The equations for the electromagnetic force given by Eqs. (8) and (9) are combined with the equations of
motion of the machine. The gyroscopic effect is taken into account by including gyroscopic disks to the model
[19]. We utilize structural modal analysis data of the machine. The FE structural analysis is carried out for an
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electrical motor and the vibration natural modes and the critical frequencies of the machine are obtained. In
the modal regime we obtain

€gþ ðCþUTGUÞ_gþ ðK�UTK0UÞg�UTQg ¼ UTFðtÞ

_gþ KcUgþ BU_gþ Ag ¼ 0, (11)

where we have carried out the system order reduction [20] based on the modal analysis results. In Eq. (11) the
displacements u are given by u ¼ Ug. The n lowest normal mode shapes including the rotor bending modes
form the modal matrix U ¼ ½fð1Þ; . . . ;fðnÞ� which is normalized by

UTMU ¼ I,

UTKU ¼ K ¼ X2
0 ¼ diagðo2

1; . . . ;o
2
nÞ,

UTCU ¼ C ¼ 2X0 diagðg1; . . . ; gnÞ, (12)

where I denotes the unit matrix and the diagonal matrix K ¼ X2
0 is composed of the eigenfrequencies

o1; . . . ;on resulting from the structural FE modal analysis. In Eq. (11) the matrices M, C, K and G denote the
mass matrix, modal damping matrix, stiffness matrix and gyroscopic matrix, respectively. In Eq. (12) the
relative damping coefficients gs are obtained from vibration measurement data of the machine, or, are
evaluated by experience.

The state-space formalism of Eq. (11) yields

_lþ Vl ¼ fðtÞ (13)

in which l ¼ ð_g; g; gÞT and fðtÞ ¼ ðUTFðtÞ; 0; 0ÞT and the system matrix V is given by

(14)

The eigenvalue analysis of V gives 2nþ 4 eigenvalues in conjugate pairs l2s ¼ l�2s�1, s ¼ 1; . . . ; nþ 2, with
modal matrix P from which the (complex) normal shapes of the machine are given by the matrix
UPðnþ 1 : 2n; :Þ. The EM eigenfrequencies ff sg and damping ratios fxsg are given by f s ¼ jImðlsÞj=ð2pÞ and
xs ¼ �ReðlsÞ=jlsj. Furthermore, two electromagnetic extra modes which do not exist in the mechanical
model are obtained.

2.3. Dynamic response analysis

Rotating mass unbalanced excitation provides reasonable means of studying motor vibration characteristics
[21]. We examine electrical motor by exciting it with a rotating mass placed on the rotor shaft center. Indeed,
in Eq. (11) we put FðtÞ ¼ ReðF0e

iomtÞ with

F0 ¼ mRo2
mð0; . . . ; 1;�i; 0; . . . ; 0Þ

T

in which m is the eccentricity mass, R the eccentricity and the non-zero vector components refer to the
transversal dofs of the rotor shaft center node. In order to study the stationary orbits of the rotor shaft center
under unbalance mass excitation and electromagnetic interaction we substitute a stationary synchronous trial
lðtÞ ¼ XðoÞeiot to Eq. (13) resulting to

XðoÞ ¼ Pdiag
1

ls þ io

� �
P�1ðUTF0; 0; 0Þ

T,
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where we have utilized the eigenvalue data for the system matrix V given by Eq. (14) with modal matrix P and
eigenvalues flsg. The displacements u are hence given by

uðtÞ ¼ UReðXnþ1:2nðoÞeiotÞ

from which we calculate the receptance and phase for the rotor center node dofs. The rotor center node
transversal displacements are given by

xðtÞ ¼ Reðx0e
iotÞ; x0 ¼ ½UXnþ1:2nðoÞ�xdof ,

yðtÞ ¼ Reðy0e
iotÞ; y0 ¼ ½UXnþ1:2nðoÞ�ydof .

The xy-phase lags between the whirling orbit and unbalanced mass position vectors are hence obtained from
the argument angles of x0 and y0. The rotor undergoes elliptical whirling with rotor center node following an
elliptic orbit [19] with semi-minor and semi-major axes given by

j sin gjffiffiffiffiffiffiffi
l1;2

p
in which g ¼ argðy0Þ � argðx0Þ and l1;2 are eigenvalues of the matrix

1

jx0jjy0j

jy0j

jx0j
� cosðgÞ

� cosðgÞ
jx0j

jy0j

2
6664

3
7775.

3. Results

3.1. 7 MW induction motor

The EM interaction model developed here was applied to a 7MW cage induction motor. The parameters of
the machine are given in Table 2. The motor was assumed to be on a rigid foundation. The oil-film stiffness of
the journal bearings was modeled with a symmetric 2� 2 stiffness matrix obtained from a commercial journal
bearing calculation software [22]. The bearing analysis was carried out at rated speed (2980 rev/min). The
damping terms induced by the oil film as well as the effect of operation speed on the bearing stiffness matrices
were neglected in order to underline the effects of EM interaction.

The 7MW motor structural FE model consists of 49 762 elements and 112 869 nodes equipped with 6 dofs
each. The modal analysis of the motor was carried out by a commercial structural mechanics FE analysis
program. The 13 lowest normal modes covering the frequency range from 0 to 90Hz were included into the
EM model given by Eq. (11). The EM coupling was performed on 6 slices.

The parameters of the electromagnetic force model of the 7MW motor were determined numerically by the
method presented in Ref. [16]. The estimated parameters are presented in Table 3. We assumed the constant
flux operation mode of the machine. The justification for this approximation and a more accurate analytical
model is given in Ref. [5]. Since the motor has two poles (p ¼ 1), a single rotor cage current variable gþ is
included into the analysis given by Eqs. (4) and (5).

In Table 4 the 7MW motor rotor bending and EM mode modal data are presented. Results are calculated
at rated speed for the undamped (C ¼ 0 in Eq. (11)) system. Table 4 shows the normal frequencies of the
mechanical (f 0) and EM (f) systems, and the electromagnetically induced damping given as the equivalent
viscous damping ratios x. Frequency reduction is given by Df ¼ f � f 0. The EM damping ratios x are slightly
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Table 4

The calculated modal data for the 7MW motor at rated rotational frequency (49.7Hz)

Mode f 0 (Hz) f (Hz) Df (%) x (%)

Rotor bending 1 27.46 26.60 �3.15 �0.01

Rotor bending 2 35.29 34.65 �1.83 �0.01

EM 49.40 1.00

The mechanical damping was neglected and only EM damping was taken into account.

Table 2

The main parameters of the example machines

7MW motor 21MVA generator

Number of pole-pairs 1 7

Number of phases 3 3

Inner diameter of stator core (mm) 630 2020

Radial air-gap length (mm) 6.5 11

Connection star star

Rated voltage (V) 6000 13800

Rated frequency (Hz) 50 60

Rated speed (rev/min) 2980 514

Rated current (A) 743 893

Rated power 7.0MW 21.3MVA

Rated slip 0.00597 0

Rotor mass (kg) 2997 25 400

Bearing span (mm) 2600 3350

The generator is a salient-pole machine and for the air-gap length is given the minimum value.

Table 3

Electromagnetic parameters of 7MW motor and 21MVA generator

7MW motor 21MVA generator

k0 7:29� 106 N=m 3:79� 107 N=m
b� 1:67� 106 A=m
bþ 19:95� 104 A=m 1:16� 105 A=m
t� 3:98� 10�2 s

tþ 0:32 s 1:02� 10�2 s

c� 10N/A

cþ 10.07N/A 20N/A

The parameters were estimated at rated speed (see Table 2).

A. Laiho et al. / Journal of Sound and Vibration 302 (2007) 683–698690
negative for the rotor bending modes, and, consequently, the EM interaction has a slight destabilizing effect
on the rotor bending modes. The effect of EM interaction on other modes (in all 13 modes) included into the
analysis was minor. The frequency reduction was up to 3.2% (rotor bending mode 1). The damping ratio was
1.0% for the mode induced by the cage current variables. The remaining modes had negligible damping ratios.
The normal frequencies and the electromagnetic damping factors of the undamped EM system as function of
rotational speed are depicted in Fig. 4. The results depicted in Fig. 4(a) show that the gyroscopic effect has no
effect on the rotor bending modes (Fig. 2).

The unbalanced mass frequency-receptance plot is shown in Fig. 3(a) with phase lags in x- and y-directions
depicted in Fig. 5. The modal damping ratios of 16% and 4% for the lower and higher rotor bending
modes, respectively, were used. For the other modes damping ratio of 1% was applied. The unbalanced
mass excitation was located at the rotor shaft center node and the results evaluated on the same node, as well.
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Fig. 2. 21 MVA generator FE model.
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The receptance is given as length of the semi-major axis of the rotor center elliptical locus. Due to the positive
electromagnetic damping ratios at the vicinity of the second rotor bending mode in Fig. 4(b) the peak
receptance of the EM system is slightly lower at the second rotor bending frequency compared to that of the
mechanical system (Figs. 3–5).

The eccentricity and orientation of the rotor center elliptical orbit are plotted against excitation frequency in
Fig. 6. In Fig. 6(a) the eccentricity � of the orbit is given by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b

a

� �2
s

in which a and b denote semi-major and semi-minor axis length, respectively. In Fig. 6(b) the semi-major axis
angle is calculated from positive x-axis showing the transition from the lower to higher rotor bending mode.
The eccentricity and orbit angle plots show strong dependence on the rotor bending normal mode shapes
which are inclined because of the non-symmetric bearing stiffness in x- and y-directions.
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bending mode 1, - - - rotor bending mode 2.
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The frequency reduction and receptance versus air-gap length are plotted for lower and higher rotor
bending modes in Figs. 7 and 8, respectively. For each air-gap value (20 in total, between 0:3de and 2:0de with
de ¼ 6:5mm from Table 2) the frequency response was calculated for excitation frequency interval 20–28Hz
for lower and 28–36Hz for higher rotor bending mode. Frequency reduction was determined from the
frequency response data of the mechanical and EM systems. The parameter bþ from Table 3 was varied by
�50%. As compared with the single complex dof system given by Eqs. (1) and (2) we obtain from the
analytical formulas given by Holopainen et al. [5] that k0; cþ�1=de and from Eq. (2) we find that the frequency
reduction is given at the low EM damping (large t) limit by

f 0 � f 	
k0 � bþcþ

2
ffiffiffiffiffiffiffi
km
p . (15)

in which m denotes the effective mass and k the effective stiffness of the rotor. The frequency reduction results
depicted in Figs. 7(b) and 8(b) for structural analysis framework follow Eq. (15). From the results we see that
the parameter bþ do not have strong influence on the frequency reduction. The receptance versus air-gap



ARTICLE IN PRESS

24 26 28 30 32 34 36 38
0.95

0.96

0.97

0.98

0.99

1

Rotation frequency [Hz]

E
c
c
e
n
tr

ic
it
y

24 26 28 30 32 34 36 38
75

90

105

120

135

150

Rotation frequency [Hz]

O
rb

it
 E

lli
p
s
e
 A

n
g
le

 [
d
e
g
]

a b

Fig. 6. 7MW motor rotor center node elliptical orbit data under unbalance mass excitation in rotor center node: (a) eccentricity and

(b) semi-major axis angle. — Electromechanical system, - - - mechanical system.

0 2 4 6 8 10 12 14
46

47

48

49

50

51

52

53

Air−gap length [mm]

R
e
c
e
p
ta

n
c
e
 [

µm
/k

N
]

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

1616

Air−gap length [mm]

F
re

q
u
e
n
c
y
 r

e
d
u
c
ti
o
n
 [
%

]

a b

Fig. 7. 7MW motor rotor bending mode 27.46Hz: (a) peak receptance and (b) frequency reduction. — bþ, - - - 0:5bþ, -
-
- 1:5bþ.

A. Laiho et al. / Journal of Sound and Vibration 302 (2007) 683–698 693
length is plotted in Figs. 7(a) and 8(a). From Fig. 8(a) we see that receptance at the higher rotor bending
frequency gets lower with smaller air-gap when parameter bþ is large enough.

3.2. 21 MVA synchronous generator

The second numerical example is a 21MVA synchronous generator. The main parameters of the generator
are given in Tables 2 and 3. The parameters b� and c� were evaluated by means of the products b�c� by the
approach presented in Ref. [23]. The mounting of the generator was modeled imitating the vibration test
conditions carried out for the actual machine. The generator was suspended by elastic springs. The natural
frequencies of the suspension system and the machine were below 5Hz in the numerical model. The FE model
mesh of the generator (see Fig. 2) consists of 8905 elements and 9582 nodes with 6 dofs each. The system order
reduction was carried out by 30 lowest modes covering the frequency range 0–100Hz. The EM coupling was
implemented by using 13 slices.

The 21MVA generator modal data calculated from the undamped (C ¼ 0 in Eq. (11)) system at rated speed
is presented in Table 5. The normal frequencies f and f 0 are for the EM model and mechanical model,
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Fig. 8. 7MW motor rotor bending mode 35:29 Hz: (a) peak receptance and (b) frequency reduction. — bþ, - - - 0:5bþ, -
-
- 1:5bþ.

Table 5

Modal analysis data of the rotor bending and EM modes of 21MVA generator at rated rotational frequency (8.6Hz)

Mode f 0 (Hz) f (Hz) Df (%) x (%)

EM 1 8.61 87.36

EM 2 8.65 38.91

Bearing block 11.04 10.92 �1.10 0.28

Rotor bending 1 20.85 19.87 �4.70 1.19

Rotor bending 2 23.21 22.43 �3.36 0.73

41.08 41.06 �0.06 0.01

Conical 43.84 43.72 �0.27 0.00

The mechanical damping was neglected and only EM damping was taken into account.
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respectively, with electromagnetic damping ratios x. The normal frequencies f 0 of the machine are given by
structural FE analysis performed by a structural analysis software package. On contrary to the modal data
shown in Table 4 for the 7MW motor the EM interaction induces damping of the system and therefore has
stabilizing effect at rated speed. The two EM modes present in the EM model are well-damped. Again, the
effect of EM interaction on other modes (in all 30 modes were included in the analysis) was minor. For them
the frequency reduction varied between 0.00% and 0.29% and the damping ratio from �0:000% to �0:005%.
The normal frequencies and the electromagnetic damping factors of the undamped EM system as function of
rotational speed are depicted in Fig. 9. The results depicted in Fig. 9(a) show that the gyroscopic effect has no
effect on the rotor bending modes.

The unbalanced mass frequency response at rotor center node is depicted in Fig. 3(b). A modal damping
ratio of 2:5% for rotor bending modes was used based on a separate rotordynamic analysis. For the other
modes a damping ratio of 1% was applied. The receptance was calculated as the semi-major axis length of the
rotor center elliptical whirling orbit. It must be mentioned that the rated operation speed of this generator is
8.6Hz. The higher rotation frequencies are presented here in order to show the effects of EM interaction
particularly on rotor bending modes.

Effect of the EM interaction on the unbalanced mass response peak amplitudes are characterized by the
electromagnetic damping profile given in Fig. 9(b). The rotor bending modes at 20.85 and 23.21Hz are
strongly affected by the EM interaction. At first rotor bending mode frequency (20.85Hz) the electromagnetic
damping term is negative resulting to 8.1% increase in unbalance response (Fig. 3(b)). On the other hand, at
second rotor bending frequency (23.21Hz) the response reduces by 17.8%.



ARTICLE IN PRESS

8 10 12 14 16 18 20 22 24 26
0

45

90

135

180

225

Rotation frequency [Hz]

 

8 10 12 14 16 18 20 22 24 26
90

135

180

225

270

Rotation frequency [Hz]

y
−p

h
a
s
e
 l
a
g
 [
d
e
g
]

x
−p

h
a
s
e
 l
a
g
 [
d
e
g
]

 
a b
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Fig. 9. Eigenanalysis data for 21 MVA generator plotted against rotational frequency: (a) eigenvalues and (b) EM damping factors.
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The x- and y-coordinate phase lags between the rotating mass and rotor position on the elliptical whirling
motion are shown in Fig. 10. In Fig. 11 elliptical orbit data is illustrated. The receptance is obtained as semi-
major axis length of the orbit ellipse. In addition, the semi-major axis angle with respect to the positive x-axis
is depicted.

The frequency reduction and receptance versus air-gap length are plotted for the first rotor bending mode at
20.85Hz in Figs. 12 and 13. For each air-gap value (20 in total, between 0:3de and 2:0de with de ¼ 11:0mm
from Table 2) the frequency response was calculated for excitation frequency interval 15–21Hz. The
parameters b� from Table 3 were varied in the limits of �50%. Frequency reduction follows Eq. (15).
Reduction of the air-gap length strengthens the EM interaction. Furthermore, the electromagnetic damping is
negative at the first rotor bending mode frequency in Fig. 9(b). Hence, the reduction of the air-gap length has a
destabilizing effect on the first rotor bending mode. The results indicate frequency reduction being dependent
on the parameter b� whereas the dependence on bþ is minor.

4. Discussion and conclusions

Distortion of the air-gap field induced by eccentric rotor motion couples the mechanical and
electromagnetic systems of an electrical machine. In this work the effect of EM coupling on the rotor
vibrations of a cage rotor machine was examined. An EM model based on 3D FE structural mechanics modal
model combined with a low-order parametric electromagnetic force model was presented. In this model, the
interaction between the mechanical and electromagnetic systems is distributed over the air gap of the machine.
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Fig. 11. 21MVA generator rotor center node elliptical orbit data under unbalance mass excitation in rotor center node: (a) eccentricity
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Fig. 12. 21MVA generator rotor bending mode 20.85Hz: (a) peak receptance and (b) frequency reduction. — b�, - - - 0:5b�, -
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This enables the inclusion of rotor and stator deformations into the analysis and, thus, yields more realistic
prediction for the effects of EM interaction.

The EM model was applied to two test cases, a 7MW induction motor and 21 MVA synchronous
generator. The effects of the EM interaction on the vibrational characteristics of the machines were studied in
terms of frequency reduction, EM damping and frequency response analysis. The obtained results confirm the
conclusions of previous research that the EM interaction may decrease the natural frequencies of the rotor
bending modes, induce additional damping or cause rotordynamic instability. In addition, the developed
method enables more refined models to be applied for the rotor and stator and electromagnetic system. This
yields enhanced predictive capability to study the EM interaction. The results of these refined models indicate
that the effects of EM interaction are apparent on rotor bending modes but minor on other structural modes.
The results show that the electromagnetic damping induced by rotor cage currents may have a strong effect on
the whirling amplitudes of the rotor bending modes.

In this study, the electrical machines were analyzed without parallel paths in the stator windings. However,
in large electrical machines parallel paths are rather the rule than the exception, and likewise, the studied
machines include the parallel paths in actual configuration, too. In addition, it is assumed that the parallel
paths affect the interaction forces resembling the effects of rotor cage currents by enabling circulatory currents
in the stator windings. Secondly, the homopolar flux may have remarkable effects on the vibrations of flexible-
shaft two-pole motors [3]. However, in this study, the homopolar flux was ignored in the estimation of EM
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Fig. 13. 21MVA generator rotor bending mode 20.85Hz: (a) peak receptance and (b) frequency reduction. — bþ, - - - 0:5bþ, -
-
- 1:5bþ.
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force parameters. Furthermore, mechanical damping was modeled as modal damping and damping stemming
from the journal bearings was ignored in order to bring out the EM interaction dynamics. However, in
practise journal bearings may bring significant damping to the rotor bending modes and therefore suppress the
EM interaction. EM interaction model with enhanced bearing modeling needs further consideration and is a
matter of future research.
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